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Scattering Analysis Interactive Database
Major initiatives

1 Phenomenology
Suite of FORTRAN programs to analyze 2→ 2 & 3 body scattering and
reaction data developed primarily by Dick Arndt
Routines: database, fit, and analysis
Implement parameterizations via field theoretic constraints
Reactions: πN → πN, ηN, ππN; KN → KN; NN → NN; πd → πd ;
πd → pp; γN → πN, ηN, η′N,KY ; eN → eπN
Open access
Passwordless secure shell: ssh -C -X said@said.phys.gwu.edu
Web interface: http://gwdac.phys.gwu.edu
Web users ∼ 100/month: modelers, comparisons to data (measured and
unmeasured), exp’l planning, simulations, event generators, detector design
and callibation, . . .

2 Theory & modeling
Dynamical multichannel effective field theory models
Comparison to phenomenological parameterizations
Derive guidance from phenomenology for approximations
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Motivation
for the current exploratory study MP & R. Workman, Phys. Rev. C, in press; arXiv: 1004.0455v1

1 Require a model independent method to obtain partial wave amplitudes
2 Existing knowledge of resonances mostly from hadronic

scattering/reactions: πN → πN, πN → ηN, πN → ωN
→ complete πN → πN measurement over significant kinematic range

3 New precision electromagnetic facilities: Bonn, JLab, Lund, Mainz, . . .
→ renaissance in reaction theory and resonance physics
→ quality & quantity of data rival/surpass hadronic data
→ possibility to ‘back-constrain’ hadronic amplitudes in unitary formalism
→ talk by I. Strakovsky, Session 6B – Crystal Ball @ MAMI-C

4 Extend SAID approach used in hadronic sector to electromagnetic
Hadronic sector πN → πN & πN → ηN (untouched)
4 channel Chew-Mandelstam approach {πN, ηN, π∆, ρN}
Electromagnetic sector γN → πN & γN → ηN
Introduce 4 channel Chew-Mandelstam approach {πN, ηN, π∆, ρN} with
same hadronic “rescattering” matrix

5 Obtain η−photoproduction amplitude with resonant phase – various
calculations [Green & Wycech; Kaiser et. al.; Aznauryan] yield wide
range of phases

6 Study baryon resonances in ηN channel
7 Study η-sector physics
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Unitarity constraint on T
Threshold branch points

Parameterization (Chew-Mandelstam) adheres to analytic structure dictated
by unitarity in the physical region W > mi + mt

S matrix

Sαβ(E) = 〈kαα|S|kββ〉

= δ(3)(kα − kβ)δαβ + 2iπδ(Eα − Eβ)〈kαα|T |kββ〉

E = W = center-of-mass energy; α, β channels πN, ηN, π∆, ρN, . . .

S†S = SS† = 1 =⇒ constraint on T

T − T † = T †ρT

Im T−1 = −ρ, ραβ = δαβρα

ρα = θ(W −mα+)
πkαEα1Eα2

W

Unitarity =⇒ real branch points at normal
thresholds

Ignore non-analytic structure in W < 0 region
(for now)

W

Tr [Im T]-1 

W(2) W(3) W(4)
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K -matrix and Chew-Mandelstam forms
after Basdevant & Berger, Phys. Rev. D 19 (1979); Babelon et. al. Nuc. Phys. B113 (1976)

Change normalization; matrix notation

K -matrix

Im T−1 = −θ(W −M+) a diagonal matrix

T−1 = Re T−1 + i Im T−1 = K−1 − iθ(W −M+)

T = K + Kiθ(W −M+)T

Chew-Mandelstam

T−1 = (K−1 + Re C)− (Re C + iθ(W −M+)) = K
−1 − C

T = K + K CT

Cα(W ) =
W −Ws

π

Z ∞
Wt

dW ′
ρα(W ′)

(W ′ −Ws)(W ′ −W )

K = K + K [Re C]K =⇒ K = {1− K [Re C]}−1K
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N/D approach
Relation to C-M approach

T (W ) = D−1(W )N(W )

ImD(W ) = N(W )ImT−1(W ) ImN(W ) = 0 W > mi + mt

ImN(W ) = D(W )ImT (W ) ImD(W ) = 0 W < 0

D(W ) =

npX
i=1

D(W ; Wi )−
1
π

npY
i=1

(W −Wi )

Z ∞
Wt

dW ′
N(W ′)ρ(W ′)

(W ′ −W )
Q

j (W ′ −Wj )

N(W ) = K

(X
i

D(W ; Wi )−
1
π

npY
i=1

(W −Wi )−
Z ∞

Wt

dW ′
N(W ′)ρ(W ′)

(W ′ −W )
Q

j (W ′ −Wj )

)

Chew-Mandelstam approximates N, neglecting left-hand cut

N(W ) = K (W )

Kαβ =

nαβX
n=0

cαβ,nzn
αβ(W )
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K -matrix formalism

Two-channel formalism (trivially generalizable to N 2-body channels)

Tπγ = (1 + iTππ)Kπγ + iTπηKηγ Tηγ = (1 + iTηη)Kηγ + iTηπKπγ

Reduction via hadronic matrix to various forms

Tηγ =

„
Kηγ −

KπγKηη
Kπη

«
(1 + iTηη) +

Kπγ
Kπη

Tηη

= A(W )(1 + iTηη(W )) + B(W )Tηη(W ) Form 1

= A′(W )(1 + iTππ(W )) + B′(W )Tππ(W ) Form 2

EP072 eta-photo-prod  03/07 Arndt/Strako 2/16/ 7
E429  [700-2900] 2818/1811 32 PRM                       SP

 S-E solutions=GWU   0.00  0.00  0.00  0.00  0.00

W
c.m.

(MeV) =1490.0[  5.0]1610.0

S11  pE=2 mFm

Anticipate resonant phase in region 1.49 GeV . W . 1.6 GeV
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Chew-Mandelstam parameterization
π− & η−photoproduction

Current hadronic parameterization fits πN → πN, πN → ηN, DR, . . .

Tαβ =
X
σ

[1− K C]−1
ασKσβ

Generalized to photoproduction (hadronic matrix fixed by above)

Tαγ =
X
σ

[1− K C]−1
ασKσγ

Perform fit at amplitude level to ReEπ
0+, ImEπ

0+ & |Eη
0+|
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Comparison to MAID

Eπ
0+ SAID and MAID solutions
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Summary

Reviewed role of unitarity determining non-analyticities in the physical
region, w > mi + mt [almost complete]

Related Chew-Mandelstam form to N/D approach→ ‘left-hand cut’
neglected in C-M

Performed simultaneous coupled-channel fit of η−photoproduction S11

multipole modulus, |Eη
0+| and π−photoproduction amplitude, Eπ

0+

Current approach yields resonant Eη
0+ phase→ encourages us to

pursue the C-M approach in fits to photoproduction observables (not
amplitudes)

Outlook
1 Perform fit to π−photoproduction data using C-M form
2 Perform simultaneous fit to π− and η−photoproduction data using C-M form
3 Perform simultaneous, global fit to πN → πN, πN → ηN, γN → πN,
γN → ηN using C-M form: offers opportunity for precision
electromagnetic data to ‘back-constrain’ hadronic amplitudes (some of
which are very poorly known)

4 Generalize to correctly account for ‘left-hand cuts’



Dedication

To the memory of our friend and
colleague, Dick Arndt, GWU Research
Professor and Virginia Tech Emeritus
Professor, who passed Saturday, April
10, 2010.
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